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First-order reversal-curve diagrams and reversible magnetization
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First-order reversal curve~FORC! diagrams have recently been used for the characterization of magnetic
systems in both geology and physics. However, the FORC distribution involves a mixed second derivative
which reduces the reversible component of the magnetization to zero. As a result, the FORC distribution is not
properly normalized. Furthermore, the calculation of the FORC distribution becomes unreliable near the axis
where the reversible magnetization should be located~i.e., theH5Hr axis!. We propose here a method of
incorporating the reversible magnetization into the FORC distribution using ‘‘extended’’ FORC’s. With ex-
tended FORC’s, the FORC distribution is properly normalized and robust near theH5Hr axis.
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I. INTRODUCTION

First-order reversal curve~FORC! diagrams1 have been a
topic of recent interest in both physics and geology.2–5 A
FORC diagram provides a detailed characterization of
hysteretic response of a magnetic system to an applied fi
FORC diagrams are based on the procedure describe
Mayergoyz for identifying the Preisach distribution of a cla
sical Preisach system.6 But with FORC diagrams, we per
form this same procedure on all types of magnetic syste
regardless of whether or not they are classical Preisach
tems, and we simply treat this procedure as a type of m
surement.

A FORC diagram is generated from a class of minor h
teresis loops referred to as First-order reversal curves
shown in Fig. 1, the acquisition of a FORC begins by sa
rating a system in a positive applied field. The applied field
lowered to a reversal fieldHr , and a FORC is the magnet
zation curve that results when the field is increased bac
saturation.6 The magnetization at the applied fieldH on the
FORC with reversal fieldHr is denoted byM (H,Hr), where
H>Hr . A FORC distribution is defined as

r~H,Hr ![2
1

2

]2M ~H,Hr !

]Hr]H
. ~1!

There can be regions wherer(H,Hr) is negative, so when
we callr(H,Hr) a distribution, we are generalizing the ter
‘‘distribution’’ to include negative values. A contour plot o
the FORC distribution is referred to as a FORC diagram

The objective of this paper is to resolve three related
sues in the definition and measurement of a FORC diagr
These issues involve~i! the normalization of the distribution
~ii ! the representation of reversible magnetization on
FORC diagram, and~iii ! the calculation of the FORC distri
bution near theH5Hr axis.

II. EXTENDED DATASETS

The FORC distribution defined by Eq. 1 presents a pr
lem involving normalization. Let us assume that asH goes to
infinity, the magnetizationM approaches a finite saturatio
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value Ms . Then we would liker(H,Hr) to be normalized,
so that

E E
Hr<H

r~H,Hr !dHdHr5Ms . ~2!

But if a system contains a reversible component of the fo
Mrev(H), then this component is reduced to zero by t
mixed second derivative in Eq.~1!. Thus, the contribution of
Mrev(H) will be missing from the integral, and the norma
ization condition in Eq.~2! will not be generally satisfied.

We next show that the FORC distribution can be given
desired normalization if we employ ‘‘extended’’ FORC’s. A
already mentioned, the set of FORC’s, denoted
M (H,Hr), is defined only forH>Hr , but we can math-
ematically extendM (H,Hr) to the entire$H,Hr% plane by
defining

M* ~H,Hr ![H M ~H,Hr ! if H.Hr

M ~H5Hr ,Hr ! if H<Hr ,
~3!

which can also be written as

M* ~H,Hr ![u~H2Hr !M ~H,Hr !

1@12u~H2Hr !#M ~H5Hr ,Hr !, ~4!

where u(x) equals 0 forx<0 and 1 forx.0. @Note that
12u(x)Þu(2x).# Then let us redefine the FORC distribu
tion as

FIG. 1. A First-order reversal curve~FORC! is acquired after
saturating the sample in a positive applied field. The applied fiel
lowered to a reversal fieldHr . A FORC is the magnetization curv
that results when the field is increased back to saturation. The m
netization at the applied fieldH on a FORC with reversal fieldHr is
denoted byM (H,Hr).
©2003 The American Physical Society24-1
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r~H,Hr ![2
1

2

]2M* ~H,Hr !

]Hr]H
. ~5!

When the dataset is extended in this way,r(H,Hr) is well
defined for all$H,Hr%, and we have

E E r~H,Hr !dHdHr

52
1

2E E dHdHr

]2M* ~H,Hr !

]H]Hr

52
1

2E dHr

]

]Hr
S E dH

]M* ~H,Hr !

]H D
52

1

2E dHr

]

]Hr
@Ms2M ~H5Hr ,Hr !#

5
1

2E dHr

]

]Hr
M ~H5Hr ,Hr !

5
1

2
@Ms2~2Ms!#5Ms , ~6!

which is the desired normalization.
In work with the Preisach model,7 the contribution of the

reversible componentMrev(H) is sometimes included in th
Preisach distribution by means of ad function ridge on the
H5Hr axis equal to

r~H5Hr ,Hr !5
1

2
d~H2Hr !

dMrev~Hr !

dHr
, ~7!

whered(H2Hr) is the Diracd function. We next show tha
when we employ the extended FORC’s just described, t
the d function in Eq. ~7! arises as an integral part of th
FORC distribution with the mixed second derivative in E
~1!.

Let us evaluater(H,Hr) on theH5Hr axis. We begin by
taking the partial derivative with respect toH. We get

]M* ~H,Hr !

]H
5

]@u~H2Hr !M ~H,Hr !#

]H

1
]@~12u~H2Hr !!M ~H5Hr ,Hr !#

]H

5u8~H2Hr !M ~H,Hr !

1u~H2Hr !
]M ~H,Hr !

]H

2u8~H2Hr !M ~H5Hr ,Hr !. ~8!

Sinceu8(H2Hr) is zero everywhere except atH5Hr , then
we can write

u8~H2Hr !M ~H,Hr !5u8~H2Hr !M ~H5Hr ,Hr !. ~9!

Thus, the first and last terms on the right-hand side of Eq.~8!
cancel. If we take the partial derivative of Eq.~8! with re-
spect toHr , we get
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]2M* ~H,Hr !

]H]Hr
52u8~H2Hr !

]M ~H,Hr !

]H

1u~H2Hr !
]2M ~H,Hr !

]H]Hr
. ~10!

Sinceu(H2Hr) equals zero whenH5Hr , then the second
term on the right-hand side of Eq.~10! evaluated on theH
5Hr axis equals zero. It can also be shown that

S u8~H2Hr !
]M ~H,Hr !

]H D uH5Hr

5d~H2Hr ! lim
H→Hr

1

]M ~H,Hr !

]H
, ~11!

where the limit approaches from above. Hence,r(H,Hr)
evaluated on theH5Hr axis becomes

r~H5Hr ,Hr !5
1

2
d~H2Hr !S lim

H→Hr
1

]M ~H,Hr !

]H D .

~12!
For a reversible magnetization of the formMrev(H), Eq.

~12! is equivalent to Eq.~7!. Hence, by extending the
FORC’s in accordance with Eq.~3!, we obtain thed function
ridge in Eq.~7! as an integral part of the FORC distributio
However, it should be emphasized that the expression in
~12! is more general than Eq.~7!. Equation~7! requires that
the reversible magnetization be of the simple formMrev(H).
In other words, Eq.~7! requires that the reversible magne
zation can be decoupled from the irreversible state of
system. But in most real systems, the reversible magne
tion is actually coupled to the irreversible state of the syste
In the following section, a specific example is presented
demonstrate how the reversible and irreversible magnet
tions can be coupled. The point here is that Eq.~12! makes
no assumption about the form of the reversible magnet
tion and is applicable even if the reversible and irreversi
magnetizations are coupled.

The extended FORC’s proposed here also remove a t
nical problem involving the calculation of the FORC distr
bution near theH5Hr axis. In our work with FORC dia-
grams, we employ datasets where the reversal fields and
data points on each FORC are uniformly spaced.1 Thus, on a
field plot such as Fig. 2, a dataset will form a square grid.
calculater(H,Hr) at a pointP, we do a local polynomial fit
on a local square grid of data points centered aboutP, as
illustrated in Fig. 2. Since the raw FORC data have no d
points forH,Hr , this method becomes problematic as o
approaches theH5Hr axis. But with the extended datas
proposed here, the square grid of data points covers the
tire plane. Hence, a local polynomial fit can be performed
all points in the$H,Hr% plane.

Finally, for the purpose of plotting a FORC distribution,
is convenient to change coordinates from$H,Hr% to $Hc
5(H2Hr)/2, Hb5(H1Hr)/2%.1 With this change of coor-
dinates, theH5Hr axis becomes theHc50 axis and Eq.
~12! becomes
4-2
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r~Hc50,Hb!5d~Hc!
1

2 S lim
H→Hr

1

]M ~H,Hr !

]H DU
Hr5Hb

.

~13!

The derivative in Eq.~13! is just the reversible magnetizatio
on the descending major hysteresis loop at applied fi
Hb . It should be noted that forH,Hr , or equivalentlyHc
,0, the FORC distribution is equal to zero.

III. DEMONSTRATION

We next demonstrate the application of these exten
FORC datasets to experimental data with a sample of a S
high-density floppy disk magnetic medium. The exact co
position of this medium is proprietary, but the magnetic co
ponent consists of fineg-Fe2O3 single-domain particles. The
magnetization of the data has been normalized so thatMs
51. The FORC diagram for this sample is shown in F
3~a!, in the $Hc ,Hb% coordinates. In the contour shadin
legend, Max denotes the value of the FORC distribution
its ‘‘irreversible’’ peak~located at roughlyHc590 mT). The
r distribution goes to zero at the upper, bottom, and ri
hand boundaries of the FORC diagram. The shading at th
boundaries corresponds tor'0 and shadings lighter tha
this represent negative regions ofr, as indicated in the con
tour shading.

The FORC diagram in Fig. 3~a! shows a sharply peake
ridge on theHc50 axis. This ridge is just thed function in
Eq. ~13!, although it has been smoothed somewhat by
local polynomial fit described earlier. If the resolution of th
dataset were increased, this ridge would approach ad func-
tion. Since this ridge is due to the presence of revers
magnetization, we will refer to it as the ‘‘reversible’’ ridge
We should note that the high density of vertical contour lin
near theHc50 axis in Fig. 3~a! makes the shading of th
reversible ridge appear somewhat darker than it really is.
horizontal cross section atHb525 mT in Fig. 3~b! gives a
better measure of the magnitude of this ridge.

FIG. 2. On a field plot, each FORC is plotted on a horizon
line with vertical position equal toHr . Each data point on a FORC
appears at a horizontal coordinate equal to the applied fieldH at that
data point. Our datasets make up a square grid on a field plot
actual dataset would include thousands of data points. The FO
distribution at a pointP is obtained with a local polynomial fit on a
535 square grid centered atP, as indicated above.
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The FORC diagram in Fig. 3 also shows two somew
surprising features: If the system has a reversible magne
tion of the formMrev(H), thenMrev(H) should be an odd
function of H and therefore the ridge should be a symmet
function of Hb . But the vertical cross section though th
reversible ridge~at Hc50) in Fig. 3~c! shows that the weigh
of the ridge as a function ofHb is nonsymmetric aboutHb
50. A second surprising feature is a negative region in F
3~a! adjacent to the vertical axis in the vicinity ofHb
5285 mT. To help us interpret these two features of t
FORC diagram in Fig. 3, we next look at a simple mode

Let us begin our modeling work by defining the ‘‘square

l

n
C

FIG. 3. ~a! FORC diagram for Sony floppy disk sample, show
ing the reversible ridge atHc50. In the contour shading legen
above the diagram, Max denotes the value of the FORC distribu
at its ‘‘irreversible’’ peak~located at aboutHc590 mT). A negative
region occurs adjacent to the vertical (Hc50) axis at aboutHb5
285 mT. Note that the high density of vertical contour lines ne
theHc50 axis makes the shading there appear darker than it re
is. ~b! A horizontal cross section passing though the irreversi
peak atHb525 mT. The ridge atHc50 can also be seen in thi
plot. ~c! A vertical cross section through the reversible ridge atHc

50.
4-3
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hysterons illustrated in Fig. 4~a!. The half-width and offset
of s are referred to as its coercivityhc and biashb , respec-
tively. The value ofs depends on the history of the applie
field H in the following way: If the applied field begins a
H5`, thens will start at11 and will switch to21 whenH
falls below2hc1hb , and will switch back to11 whenH
rises abovehc1hb . Next, let us add curvature to the top an
bottom branches ofs to obtain the ‘‘curvilinear’’ hysteronscl

shown in Fig. 4~b!. This curvilinear hysteron can be math
ematically described by:

scl[s$12g@s~H2hb!/hc!#%, ~14!

wheres561 is the orientation of the square hysteron w
coercivity 2hc and bias2hc , and whereg(H) must go to
zero asH goes to infinity. Curvilinear hysterons of this typ
have been previously used in Refs. 7 and 8. For Fig. 4~b! and
in our calculations we used

g~H !52.34@ tanh~20.34H21.2!11#, ~15!

where thisg(H) was selected in order to fit the measur
FORC diagram in Fig. 3, as we will see below.

Changes in magnetization coming from the curvature
Fig. 4~b! are reversible. But the slope, or susceptibility, ofscl

is not the same on the bottom and top branches. For exam
just above2hc , the top branch has a slightly larger susce
tibility than does the lower branch. Therefore, the reversi
magnetization of the curvilinear hysteronscl in Fig. 4~b! is
coupled to its irreversible orientation. It cannot be expres
in the simple formMrev(H).

Let us consider a collection ofN curvilinear hysterons
with a distribution of coercivities and biases given
P(hc ,hb)5 f (hc)g(hb). This distribution of bias is intended
to represent a distribution of interaction fields in a collecti

FIG. 4. ~a! A basic hysterons with coercivityhc and biashb . ~b!
A curvilinear hysteron with the samehc andhb .
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of interacting particles. We will letg(hb) be a Gaussian with
standard deviation 10.6, andf (hc) be a Gaussian with mea
106.4 and standard deviation 25.9, where these values
chosen to fit the data in Fig. 3. In our calculations, we
N5400 000. The spacing of the fields in our numeric
dataset is the same as the spacing in the experimental
~2.3 mT!. The magnetization was normalized so thatMs
51. The FORC diagram for this collection of curvilinea
hysterons is shown in Fig. 5~a!.

As with the experimental data, the FORC diagram in F
5~a! has a sharply peaked reversible ridge on theHc50 axis.
The reversible ridge can also be seen in Fig. 5~b!. In Fig.
5~c!, we plot the vertical cross section though the reversi
ridge ~i.e., at Hc50). As with the experimental data, thi
cross section is not symmetric aboutHb50. This lack of
symmetry is due to the fact that, as discussed earlier,
upper and lower branches of the curvilinear hysteron in F
4~b! do not have the same slope. In general, when the rev
ible magnetization is coupled to the irreversible state of

FIG. 5. ~a! The FORC diagram of a collection of curvilinea
hysterons, as described in the text.~b! A horizontal cross section
through this FORC distribution atHb50. ~c! A vertical cross sec-
tion through the reversible ridge~i.e., atHc50).
4-4
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system, as it is for this curvilinear hysteron, then the reve
ible ridge will be nonsymmetric aboutHb50.

The negative region ofr(H,Hr) in Fig. 5~a! is also due to
the coupling between the reversible magnetization and
irreversible state of the system. To help understand how
negative region arises, consider this: When the hystero
Fig. 4~b! switches down atHr52hc , then its susceptibility
at H just above2hc decreases, because the hysteron is n
on its lower branch. So asHr is lowered and passes throug
Hr52hc , the susceptibility of the FORC’s at applied field
just aboveH52hc can slightly decrease. If the susceptib
ity of the FORC’s, at some fixed applied fieldH, decreases a
Hr is lowered, then a negative value in the FORC distrib
tion will result @see Eq.~1!#.

As already noted, the distributionsg(hb) and f (hc) in our
model were chosen to fit our model to the data in Fig. 3~a!.
However, the features of the FORC diagram which are
interest here—the asymmetry of the reversible ridge and
presence of a negative region—are purely a consequenc
the curvilinear hysteron in Fig. 4~b!.

Finally, we note that the ‘‘irreversible’’ part of the FORC
distribution in Fig. 3~a! has some interesting fine structur
At high Hc , the distribution has a ‘‘tail’’ along the horizonta
V
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(Hb50) axis; and the distribution peak, at aboutHc

590 mT, is located slightly below theHb50 axis. By con-
trast, the modeled distribution in Fig. 5~a! is simply the prod-
uct of Gaussian coercivity and bias distributions. To obt
the same fine structure in our modeled FORC distribut
would require a more realistic model of interactions than
one used here. In a future paper, we will discuss in detail
relationship between interactions and the tail in Fig. 3~a!.

IV. CONCLUSION

A FORC diagram contains detailed information about t
hysteresis behavior of a magnetic system. Currently, a n
ber of workers are looking for ways to interpret and app
this information. In this paper, we have addressed three
sues which have hindered the use of FORC diagrams.
extended FORC’s proposed here enable a FORC diagra
fully capture the contribution of the reversible magnetiz
tion. They make the numerical calculation of the FORC d
tribution robust near theH5Hr axis. And with these ex-
tended FORC’s, the normalization of the FORC distributi
is equal to the saturation magnetization.
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