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First-order reversal-curve diagrams and reversible magnetization
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First-order reversal curvéFORQ diagrams have recently been used for the characterization of magnetic
systems in both geology and physics. However, the FORC distribution involves a mixed second derivative
which reduces the reversible component of the magnetization to zero. As a result, the FORC distribution is not
properly normalized. Furthermore, the calculation of the FORC distribution becomes unreliable near the axis
where the reversible magnetization should be locdted, theH=H, axis). We propose here a method of
incorporating the reversible magnetization into the FORC distribution using “extended” FORC's. With ex-
tended FORC's, the FORC distribution is properly normalized and robust neé&t-tie, axis.
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[. INTRODUCTION value M. Then we would likep(H,H,) to be normalized,
so that

First-order reversal curvéeORO diagram$ have been a
topic of recent interest in both physics and geoldgyA f f p(H,H,)dHdH,=Ms. ()
FORC diagram provides a detailed characterization of the Hr=H
hysteretic response of a magnetic system to an applied field&ut if a system contains a reversible component of the form
FORC diagrams are based on the procedure described i, (H), then this component is reduced to zero by the
Mayergoyz for identifying the Preisach distribution of a clas-mixed second derivative in EqL). Thus, the contribution of
sical Preisach systemBut with FORC diagrams, we per- M ,(H) will be missing from the integral, and the normal-
form this same procedure on all types of magnetic systemszation condition in Eq(2) will not be generally satisfied.
regardless of whether or not they are classical Preisach sys- We next show that the FORC distribution can be given the
tems, and we simply treat this procedure as a type of meadesired normalization if we employ “extended” FORC's. As
surement. already mentioned, the set of FORC'’s, denoted by

A FORC diagram is generated from a class of minor hys-M (H,H,), is defined only forH=H,, but we can math-
teresis loops referred to as First-order reversal curves. Asmatically extendM(H,H,) to the entire{H,H,} plane by
shown in Fig. 1, the acquisition of a FORC begins by satu-defining
rating a system in a positive applied field. The applied field is
lowered to a reversal fieldl, , and a FORC is the magneti- M* (H,H, )=
zation curve that results when the field is increased back to T
saturatiorf. The magnetization at the applied figklon the
FORC with reversal fieldH, is denoted byM (H,H,), where

M(H,H,) if H>H,
M(H=H, ,H,) if H<H,,
which can also be written as

()

H=H,. A FORC distribution is defined as M*(H,H)=60(H—H,)M(H,H,)
+[1-O0(H—H,)]M(H=H, H 4
1 (92M(H,Hr) [ 0( r)] ( rs r)a ( )
p(HH)=-5—0—m— (1) where (x) equals 0 forx<0 and 1 forx>0. [Note that
' 1—6(x)# 6(—x).] Then let us redefine the FORC distribu-
tion as

There can be regions whepgH,H,) is negative, so when
we callp(H,H,) a distribution, we are generalizing the term
“distribution” to include negative values. A contour plot of
the FORC distribution is referred to as a FORC diagram.
The objective of this paper is to resolve three related is-
sues in the definition and measurement of a FORC diagram.
These issues involv@) the normalization of the distribution,
(i) the representation of reversible magnetization on a
FORC diagram, angiii) the calculation of the FORC distri-
bution near theHd=H, axis. I g

FIG. 1. A First-order reversal curvd-ORQ is acquired after
Il. EXTENDED DATASETS saturating the sample in a positive applied field. The applied field is
lowered to a reversal field, . A FORC is the magnetization curve
The FORC distribution defined by Eq. 1 presents a probthat results when the field is increased back to saturation. The mag-
lem involving normalization. Let us assume thatigoes to  netization at the applied field on a FORC with reversal fiel, is
infinity, the magnetizatiorM approaches a finite saturation denoted byM(H,H,).
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1 #*M*(H,H,)
p(HH)=—5 ——7F7"—

2 oH,oH ©

When the dataset is extended in this wagH,H,) is well
defined for all{H,H,}, and we have

J’ J p(H,H,)dHdH;,

- 1fdedH FPM*(H,H,)
2 " 9HOH,

~2) TTH, H

1 J
:_EJ'dHra_Hr[Ms_M(H:HryHr)]
—1de 4 M(H=H, ,H
_E ro"_Hr ( — My, r)

1
:E[Ms_(_Ms)]:Ms- (6)
which is the desired normalization.

In work with the Preisach modélthe contribution of the
reversible componeril ., (H) is sometimes included in the
Preisach distribution by means oféafunction ridge on the
H=H, axis equal to

dMe,(Hp)

1
P(H:Hr,Hr)ZEtS(H—Hr)T, (7)
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&ZM*(H,Hr)_ o (H—H IM(H,H,)
amen, O (HTHOTGE—
+6(H—H PMH,H) 10
( r)ﬁH—o’?Hr' (10

Since#(H—H,) equals zero whetl=H,, then the second
term on the right-hand side of E¢LO) evaluated on théd
=H, axis equals zero. It can also be shown that

, IM(H,H,)
0'(H=H) o[-,

IM(H,H,)

=5(H=H,) lim —— -~

H—H

11

where the limit approaches from above. HenpéH,H,)
evaluated on thél=H, axis becomes

lim

HoH

1
P(H:HrvHr)zié(H_Hr)( oH

&M(H,H,))
(12)

For a reversible magnetization of the foivh,.,(H), Eq.
(12 is equivalent to Eq.(7). Hence, by extending the
FORC's in accordance with E@3), we obtain thes function
ridge in Eq.(7) as an integral part of the FORC distribution.
However, it should be emphasized that the expression in Eq.
(12) is more general than Eq7). Equation(7) requires that
the reversible magnetization be of the simple fdviy,,(H).
In other words, Eq(7) requires that the reversible magneti-
zation can be decoupled from the irreversible state of the

whereS(H—H,) is the Diracé function. We next show that  system. But in most real systems, the reversible magnetiza-
when we employ the extended FORC's just described, thefon is actually coupled to the irreversible state of the system.
the & function in Eq.(7) arises as an integral part of the | the following section, a specific example is presented to
FORC distribution with the mixed second derivative in Eq. demonstrate how the reversible and irreversible magnetiza-

(D).
Let us evaluate(H,H,) on theH=H, axis. We begin by
taking the partial derivative with respect kb We get

IM*(H,H,) d[6(H-H)M(H,H)]

oH oH
I(1=6(H=H,))M(H=H, ,H;)]
* oH
=0'"(H-H,)M(H,H,)
IM(H,H,)
+0(H_Hr)T

—60'(H-H)M(H=H H,). 8

Since#’(H—H,) is zero everywhere exceptldt=H,, then
we can write

6'(H=H)M(H,H)=6"(H-H)M(H=H, ,H/). (9

Thus, the first and last terms on the right-hand side of(&q.
cancel. If we take the partial derivative of E@) with re-
spect toH, , we get

tions can be coupled. The point here is that Bf) makes

no assumption about the form of the reversible magnetiza-
tion and is applicable even if the reversible and irreversible
magnetizations are coupled.

The extended FORC's proposed here also remove a tech-
nical problem involving the calculation of the FORC distri-
bution near theH=H, axis. In our work with FORC dia-
grams, we employ datasets where the reversal fields and the
data points on each FORC are uniformly spat@tus, on a
field plot such as Fig. 2, a dataset will form a square grid. To
calculatep(H,H,) at a pointP, we do a local polynomial fit
on a local square grid of data points centered aliyuas
illustrated in Fig. 2. Since the raw FORC data have no data
points forH<H,, this method becomes problematic as one
approaches thél=H, axis. But with the extended dataset
proposed here, the square grid of data points covers the en-
tire plane. Hence, a local polynomial fit can be performed at
all points in the{H,H,} plane.

Finally, for the purpose of plotting a FORC distribution, it
is convenient to change coordinates frdi,H,} to {H,
=(H—H,)/2, H,=(H+H,)/2}.1 With this change of coor-
dinates, theH=H, axis becomes thé&i,=0 axis and Eq.
(12) becomes
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FIG. 2. On a field plot, each FORC is plotted on a horizontal 0 100 H Ty 200
line with vertical position equal tél, . Each data point on a FORC c (M)
appears at a horizontal coordinate equal to the appliedHigltithat (b)

data point. Our datasets make up a square grid on a field plot. An
actual dataset would include thousands of data points. The FORC
distribution at a poinP is obtained with a local polynomial fit on a
5X5 square grid centered Bt as indicated above.

p (emu/mT 2)

atHb=-5 mT

1 - dM(H,H))
p(He=0Hp)=38(H)5| lim ———
2 HoHY H >
(13 ©
The derivative in Eq(13) is just the reversible magnetization ) p (emu/mT 2)

on the descending major hysteresis loop at applied field
Hy . It should be noted that fdd<H,, or equivalentlyH,
<0, the FORC distribution is equal to zero.

A

IIl. DEMONSTRATION

We next demonstrate the application of these extended
FORC datasets to experimental data with a sample of a Sony “00 700 0
high-density floppy disk magnetic medium. The exact com- Hy (mT)
position of this medium is proprietary, but the magnetic com-
ponent consists of fing-Fe,05 single-domain particles. The FIG. 3. (a) FORC diagram for Sony floppy disk sample, show-
magnetization of the data has been normalized so M@t ing the reversible ridge atl,=0. In the contour shading legend
=1. The FORC diagram for this sample is shown in Fig.ab_ove.the diagram, Max denotes the value of the FORC distribution
3(a), in the {H.,H,} coordinates. In the contour shading at |t.s “|rreverS|bIej' peak(located at f'abOUt-IC:QO .mT).Anegatlve
legend, Max denotes the value of the FORC distribution af€9ion occurs adjacent to the vertica {=0) axis at about, =
its “irreversible” peak (located at roughlyH =90 mT). The —85 mT. No_te that the high d(_ensny of vertical contour I|ne§ near

. . . theH . =0 axis makes the shading there appear darker than it really
p distribution goes to zero at the upper, bottom, and right ) . . ) -
hand boundaries of the FORC diagram. The shading at the is. (b) A h(irlzontal Cross §ect|on pzissmg though the |rre.vers'|ble
. . . %%ak atH,=—5 mT. The ridge aH.=0 can also be seen in this
bqundarles correspc_)nds t‘?%o and S_ha(_jmgs I_|ghter than plot. (c) A vertical cross section through the reversible ridgéiat
this represent negative regionsmf as indicated in the con- _
tour shading.

The FORC diagram in Fig.(d) shows a sharply peaked The FORC diagram in Fig. 3 also shows two somewhat
ridge on theH =0 axis. This ridge is just thé function in  surprising features: If the system has a reversible magnetiza-
Eg. (13), although it has been smoothed somewhat by théion of the formM,¢,(H), thenM¢,(H) should be an odd
local polynomial fit described earlier. If the resolution of the function ofH and therefore the ridge should be a symmetric
dataset were increased, this ridge would approaéhfanc-  function of H,. But the vertical cross section though the
tion. Since this ridge is due to the presence of reversiblgeversible ridgdatH . =0) in Fig. 3c) shows that the weight
magnetization, we will refer to it as the “reversible” ridge. of the ridge as a function dfl, is nonsymmetric about
We should note that the high density of vertical contour lines=0. A second surprising feature is a negative region in Fig.
near theH.=0 axis in Fig. 3a) makes the shading of the 3(a) adjacent to the vertical axis in the vicinity dfi,
reversible ridge appear somewhat darker than it really is. Thes —85 mT. To help us interpret these two features of the
horizontal cross section &t,=—5 mT in Fig. 3b) gives a FORC diagram in Fig. 3, we next look at a simple model.
better measure of the magnitude of this ridge. Let us begin our modeling work by defining the “square”
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FIG. 4. (a) A basic hysterors with coercivityh, and biash,, . (b) o 100 o (mT) 2
A curvilinear hysteron with the sante, andh,,.
(c) p (emu/mT2)

hysterons illustrated in Fig. 4a). The half-width and offset
of s are referred to as its coercivity, and biash,,, respec-
tively. The value ofs depends on the history of the applied
field H in the following way: If the applied field begins at
H=c, thenswill start at+ 1 and will switch to—1 whenH
falls below —h.+hy, and will switch back to+1 whenH
rises abovén.+h,. Next, let us add curvature to the top and . . >
bottom branches afto obtain the “curvilinear” hysterors®' -200 -100 0
shown in Fig. 4b). This curvilinear hysteron can be math- Hp (MT)
ematically described by:

FIG. 5. (a) The FORC diagram of a collection of curvilinear
s'=s{1—g[s(H—hy)/h)1}, (14) hysterons, as described in the tefli) A horizontal cross section
through this FORC distribution di,=0. (c) A vertical cross sec-
wheres=*1 is the orientation of the square hysteron with tion through the reversible ridgée., atH,=0).

coercivity —h. and bias—h., and whereg(H) must go to
zero asH goes to infinity. Curvilinear hysterons of this type
have been previously used in Refs. 7 and 8. For Fig). dnd

in our calculations we used

of interacting particles. We will leg(h,) be a Gaussian with
standard deviation 10.6, aridh.) be a Gaussian with mean
106.4 and standard deviation 25.9, where these values are
g(H)=2.34tanh( —0.34H—-1.2)+1], (15) chosen to fit the data in Fig. 3. In our ca]culations, we let
N=400000. The spacing of the fields in our numerical
where thisg(H) was selected in order to fit the measureddataset is the same as the spacing in the experimental data
FORC diagram in Fig. 3, as we will see below. (2.3 mT). The magnetization was normalized so ti\df
Changes in magnetization coming from the curvature in=1. The FORC diagram for this collection of curvilinear
Fig. 4(b) are reversible. But the slope, or susceptibilitysdf hysterons is shown in Fig.(&.
is not the same on the bottom and top branches. For example, As with the experimental data, the FORC diagram in Fig.
just above—h,, the top branch has a slightly larger suscep-5(a) has a sharply peaked reversible ridge onHhe- 0 axis.
tibility than does the lower branch. Therefore, the reversibleThe reversible ridge can also be seen in Figh)5In Fig.
magnetization of the curvilinear hystersfl in Fig. 4b) is  5(c), we plot the vertical cross section though the reversible
coupled to its irreversible orientation. It cannot be expresseddge (i.e., atH.=0). As with the experimental data, this
in the simple formM ¢, (H). cross section is not symmetric abadf,=0. This lack of
Let us consider a collection dfl curvilinear hysterons symmetry is due to the fact that, as discussed earlier, the
with a distribution of coercivities and biases given by upper and lower branches of the curvilinear hysteron in Fig.
P(h¢,hp) =f(h)g(hy). This distribution of bias is intended 4(b) do not have the same slope. In general, when the revers-
to represent a distribution of interaction fields in a collectionible magnetization is coupled to the irreversible state of the
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system, as it is for this curvilinear hysteron, then the revers(H, =0) axis; and the distribution peak, at abobt,

ible ridge will be nonsymmetric abol,=0. =90 mT, is located slightly below thie,=0 axis. By con-
The negative region gf(H,H,) in Fig. 5@ is also due to 4t the modeled distribution in Fig(d is simply the prod-
the coupling between the reversible magnetization and thget of Gaussian coercivity and bias distributions. To obtain
irreversible state of the system. To help understand how thighe same fine structure in our modeled FORC distribution
negative region arises, consider this: When the hysteron ifoy|d require a more realistic model of interactions than the
Fig. 4(b) switches down aH,=—hc, then its susceptibility one ysed here. In a future paper, we will discuss in detail the

atH just above—h, decreases, because the hysteron is nowe|ationship between interactions and the tail in Fig).3
on its lower branch. So a4, is lowered and passes through

H,=—h,, the susceptibility of the FORC's at applied fields
just aboveH = —h, can slightly decrease. If the susceptibil-
ity of the FORC'’s, at some fixed applied fidlj decreases as
H, is lowered, then a negative value in the FORC distribu- A FORC diagram contains detailed information about the
tion will result [see Eq.(1)]. hysteresis behavior of a magnetic system. Currently, a num-

As already noted, the distributioggh,) andf(h.) inour  ber of workers are looking for ways to interpret and apply
model were chosen to fit our model to the data in Fi@).3 this information. In this paper, we have addressed three is-
However, the features of the FORC diagram which are ofues which have hindered the use of FORC diagrams. The
interest here—the asymmetry of the reversible ridge and thextended FORC's proposed here enable a FORC diagram to
presence of a negative region—are purely a consequence fflly capture the contribution of the reversible magnetiza-
the curvilinear hysteron in Fig.(d). tion. They make the numerical calculation of the FORC dis-

Finally, we note that the “irreversible” part of the FORC tribution robust near théd=H, axis. And with these ex-
distribution in Fig. 3a) has some interesting fine structure. tended FORC's, the normalization of the FORC distribution
At high H., the distribution has a “tail” along the horizontal is equal to the saturation magnetization.

IV. CONCLUSION
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